Signal Processing and Analysis APIs 1.3 @ Virtins TeChnOIOQy

Signal Processing and Analysis (VtSPA) APls

Version 1.3

Note: VIRTINS TECHNOLOGY reserves the right to make modifications to this document at any time without
notice. This document may contain typographical errors.

www.virtins.com 1 Copyright © 2014-2021 Virtins Technology

Signal Processing and Analysis APIs 1.3 @ Virtins TeChnOIOQy

TABLE OF CONTENTS

1. INTRODUGCTION ...ttt ettt bttt et e st e st e bt abe e s e e e e besaeebesbe et e eseeneebesbesbeabeabeaseeneestenbeneesnens 3
VA I o N o 1 T PSSR RO 3
2.1 TIME DOMAIN APIS ...ttt ettt et b bt bbbt bbbt bt bt e e b e btk e b e eb e e st e nb e e e nr e b e 3
2.1.1 SPA_MaXMINMEANRMScciiiiiiiiieiie ettt bbbt bbbt r et r et e 3

2.1.2 SPA _FreqUENCYCOUNTEEc.uii it ettt eite ettt ettt ettt et et ekt et e et e et e e e be e e be e e bbeebe e e beeebeeetes 4

2.1.3 SPA WINUOWING ...viveiteeieeieie ittt e ettt ettt testaesa e e e e st et e stesteateesaese et e besaesteaaeeneeseeneeneeneenne e 5

2.2 FREQUENCY DOMAIN APIS ..ottt e e ettt e e ettt e e e ettt e e e eabe e e e s etbeeeeatbeeeeabbeeessabeeeesateeeeanes 6
N | = A e USSR 6

A | o A 1 (A N USSR 7

2.2.3 SPA_SpectrumAnalysisSignalChannel ... 7

2.2.4 SPA_SpectrumANnalysisDUAICHANNEL...........coi i 9

2.2.5 SPA _PeakFrequenCYDEIECLIONcccveiieieeiesiesee st teete et e s te e te e te s e e e e sreesteesteenseeneesseenreens 12

2.2.8 SPA _IMECC.....c et bbbttt bbbt bbbt h e bbb bbbt h e b ne b e 12

2.2.7 SPA _DTW ettt bbbt bt h et e bt bt E e e b e e b e e R e b e b e bbbt bt bt e e bt nr e 14

S T | o S I o | PSS 14

2.3 GENERAL APIS ..ottt sttt ettt et b e bbbttt a b e eb e e bt ekt e ke e be e st e ehe e ebe e nheenbeenbeenbennrenreen 16
2.3 L SPA _UNIOCK ...t bbb 16

3. VTSPA DEVELOPMENT GUIDE........coi ittt sttt sttt sne st st ste e eneeeenseseesnens 18
3.1 FLOWCHART S .. ettt stee st e st e ettt st e bt e bt e bt e st e s e e e b e e b e eh e e et e ae e e R e e eh e e eE e e R e e s b e e Rt e R e e e Re e eRe e eRe e R e enneenrennrenreen 18
3.2 BASIC FILES ...ttt ettt bt et R Rt Rt R e e Rt R e R e Re e e Rt e R e nn e rennrenre e 18

4. SAMPLE PROGRAIMS ...t bbbttt b e bbbt h e et et sb e bt bt e bt e e et et nne e 19
4.1 TESTDAQ WRITTEN IN VISUAL CH 8.0 ..eiiiiiiiiiiiiie ittt sttt e sine s steeenaee s 19
4.2 TESTDAQ WRITTEN IN VISUAL CH 2012 ...ttt st sttt ettt sttt 20

www.virtins.com 2 Copyright © 2014-2021 Virtins Technology

Signal Processing and Analysis APIs 1.3 @ Virtins TeChnOIOQy

1. Introduction

Virtins Technology’s Signal Processing and Analysis (vtSPA) Application Programming
Interfaces (APIs) provides a suite of generic APIs for data processing and analysis. It
contains some unique features / algorithms originated and only available from Virtins
Technology.

2. VtSPA APIs

2.1 Time Domain APIs
2.1.1 SPA_MaxMinMeanRMS

The SPA_MaxMinMeanRMS function calculates the maximum, minimum, mean, and RMS
values of the input data.

int SPA MaxMinMeanRMS (
double *DatalnkU,
DWORD DataCount,
double *Maxk,

double *Min,

double *Mean,

double *RMS

);

Parameters
DataInEU

Pointer to the data to be analyzed (input)
DataCount

Number of data to be analyzed (input)

Max

Pointer to the maximum value of the analyzed data (output)
Min

Pointer to the minimum value of the analyzed data (output)
Mean

Pointer to the mean value of the analyzed data (output)
RMS

Pointer to the RMS value of the analyzed data (output)

Return Values
Reserved.

www.virtins.com 3 Copyright © 2014-2021 Virtins Technology

Signal Processing and Analysis APIs 1.3 @ Virtins TeChnOIOQy

2.1.2 SPA_FrequencyCounter

The SPA_FrequencyCounter function calculates the frequency, total count, RPM, duty cycle,
cycle RMS, cycle mean values of the input data using a software frequency counter
algorithm.

int SPA FrequencyCounter (
double *DatalInEU,

DWORD DataCount,

double SamplingFrequency,

double Max,

double Min,

double TriggerLevelPercent,
double TriggerHysteresisPercent,
double FrequencyDivider,

double * FrequencyCount,

double * TotalCount,
double * RPM,

double * DutyCycle,
double * CycleRMS,
double * CycleMean

) ;

Parameters

DataInEU

Pointer to the data to be analyzed (input)
DataCount

Number of data to be analyzed (input)
SamplingFrequency

Sampling frequency of the data to be analyzed (input)
Max

Maximum value of the data to be analyzed. It can be obtained through
SPA_MaxMinMeanRMS(). (input)

Min
Minimum value of the data to be analyzed. It can be obtained through
SPA_MaxMinMeanRMS(). (input)

TriggerLevelPercent

Specifies the trigger level percentage (-100%~100%) with regards to Max and Min
for the software frequency counter. (input)

TriggerHysteresisPercent

Specifies the trigger hysteresis percentage (0%~100%) with regards to ¥z of the
difference of Max and Min for the software frequency counter which is equipped
with Schmitt Trigger capability. (input)

FrequencyDivider

Specifies the frequency dividing factor for the software frequency counter. (input)

www.virtins.com 4 Copyright © 2014-2021 Virtins Technology

Signal Processing and Analysis APIs 1.3 @ Virtins TeChnOIOQy

FrequencyCount

Pointer to the counted frequency. (output)
TotalCount

Pointer to the counted total count. (output)
RPM

Pointer to the counted RPM value. (output)
DutyCycle

Pointer to the calculated duty cycle value. (output)
CycleRMS

Pointer to the calculated cycle RMS value. (output)
CycleMean

Pointer to the calculated cycle mean value. (output)

Return Values
Reserved.

2.1.3 SPA_Windowing
The SPA_Windowing function imposes window on the input data.

double SPA Windowing (
double *DatalnkU,

int WindowType,

DWORD DataCount,

BOOL FilterFlag

)

Parameters
DatalnEU

Pointer to the data to be processed (input & output)
WindowType
Specifies the window function type:

0: Rectangle 1: Triangle (or Fejer) 2: Hanning 3: Hamming 4: Blackman
5: Exact Blackman 6: Blackman Harris 7: Blackman Nuttall 8: Flat Top

9: Exponetial 0.1 10: Gaussian 2.5 11: Gaussian 3.0 12: Gaussian 3.5

13: Welch (or Riesz) 14: Cosine 1.0 15: Cosine 3.0 16: Cosine 4.0

17: Cosine 5.0 18: Riemann (or Lanczos) 19: Parzen 20: Tukey 0.25

21: Tukey 0.50 22: Tukey 0.75 23: Bohman 24: Poisson 2.0 25: Poisson 3.0
26: Poisson 4.0 27: Hanning-Poisson 0.5 28: Hanning-Poisson 1.0

29: Hanning-Poisson 2.0 30: Cauchy 3.0 31: Cauchy 4.0 32: Cauchy 5.0
33: Bartlett-Hann 34: Kaiser 0.5 35: Kaiser 1 36: Kaiser 2 37: Kaiser 3
38: Kaiser 4 39: Kaiser 40: Kaiser 6 41: Kaiser 7 42: Kaiser 8 43: Kaiser 9
44: Kaiser 10 45: Kaiser 11 46: Kaiser 12 47: Kaiser 13 48: Kaiser 14

49: Kaiser 15 50: Kaiser 16 51: Kaiser 17 52: Kaiser 18 53: Kaiser 19

www.virtins.com 5 Copyright © 2014-2021 Virtins Technology

Signal Processing and Analysis APIs 1.3

@ Virtins Technology

54: Kaiser 20.

The value behind the window name is the parameter value of that window. Please
refer to relevant reference books for the definition of these window functions. A
good example can be found at:

http://www.virtins.com/doc/D1003/Evaluation of Various Window Functions usi

ng Multi-Instrument D1003.pdf
(input)

DataCount
Number of data to be processed. (input)

FilterFlag
False: Window for spectral analysis (asymmetric)

True: Window for digital filter design (symmetric)
(input)

Return Values
Total energy of the window function (=DataCount x [RMS of the window function]?).

2.2 Frequency Domain APIs
2.2.1SPA_FFT
The SPA_FFT function performs FFT or inverse FFT.

SPA FFT (
double * xr,
double * xi,
long FFTSize,
int InverseFlag

) ;

Parameters
Xr

Pointer to the real part of data. (input & output)

X1

Pointer to the imaginary part of data. (input & output)
FFTSize

Number of FFT points. It must be a power of 2. (input)
InverseFlag

0: FFT 1 0FFT

(input)

www.virtins.com 6 Copyright © 2014-2021 Virtins Technology

http://www.virtins.com/doc/D1003/Evaluation_of_Various_Window_Functions_using_Multi-Instrument_D1003.pdf
http://www.virtins.com/doc/D1003/Evaluation_of_Various_Window_Functions_using_Multi-Instrument_D1003.pdf

Signal Processing and Analysis APIs 1.3 @ Virtins TeChnOIOQy

Return Values
Reserved.

2.2.2 SPA_Nto2NFFT

The SPA_Nto2NFFT function performs 2N-point FFT using N-point FFT. It is faster than
performing 2N-point FFT directly. However, it does not support inverse FFT.

SPA Nto2NFFT (
double * xr,
double * xi,
long FFTSize,
int InverseFlag

);
Parameters
Xr
Pointer to the real part of data. (input & output)
x1
Pointer to the imaginary part of data. (input & output)
FFTSize

Number of FFT points. It must be a power of 2. Internally, FFT will be performed
with %2 FFTSize. (input)

InverseFlag

Must be zero. (input)

Return Values
Reserved.

2.2.3 SPA_SpectrumAnalysisSignalChannel

The SPA_SpectrumAnalysisSignalChannel function performs single-channel analysis for
amplitude spectrum, phase spectrum, auto correlation, depending on the analysis mode
selected.

SPA SpectrumAnalysisSignalChannel (
double* xr,

double * xi,

double * xp,

double * DatalnEU,

long FFTSize,

DWORD DataCount,

double Mean,

int WindowType,

double WindowOverlapPercent,
int AnalysisMode

)

www.virtins.com 7 Copyright © 2014-2021 Virtins Technology

Signal Processing and Analysis APIs 1.3 @ Virtins TeChnOIOQy

Parameters
Xr

Pointer to the real part of FFT/iIFFT intermediate / final result. (output)

X1
Pointer to the imaginary part of FFT/IFFT intermediate / final result. (output)
xp
Pointer to the spectrum analysis result. (output)
DataInEU
Pointer to the data to be analyzed. (input)
FFTSize
Number of FFT points. It must be a power of 2. (input)
DataCount
Number of data to be analyzed (input)
Mean
Mean value of the data to be analyzed. It can be obtained through
SPA_MaxMinMeanRMS(). (input)
It is used to remove the mean in the data in time domain before spectral analysis.
WindowType

Specifies the window function type. (refer to the same parameter in
SPA_Windowing()). (input)

WindowOverlapPercent
Specifies the window overlap percentage. Its value should be equal to or greater
than O but less than 1. (input)

AnalysisMode
Analysis mode. (input)

0: Amplitude Spectrum
xr: real part of FFT intermediate / final result (FFTSize points)
xi: imaginary part of FFT intermediate / final result (FFTSize points)
xp: RMS amplitude spectrum result (FFTSize / 2 + 1 points)

1: Phase Spectrum
xr: real part of FFT intermediate / final result (FFTSize points)
xi: imaginary part of FFT intermediate / final result (FFTSize points)
Xp: phase spectrum result in degree (FFTSize / 2 + 1 points)

2: Auto Correlation
Xp: auto correlation result (FFTSize - 1 points)

If FFTSize IS greater than DataCount, then zeros will be padded at the end of
DataInEU during FFT computation.

www.virtins.com 8 Copyright © 2014-2021 Virtins Technology

Signal Processing and Analysis APIs 1.3 @ Virtins TeChnOIOQy

If FFTSize s less than DataCount, then DataInEU will be split into different segments
with the size of each segment equal to FFTS1 ze. The last segment of data will be dropped if
its size is not equal to FFTSize. The final result will be obtained by averaging the FFT
results from all segments. It should be noted that this approach is used for Amplitude
Spectrum, Auto Correlation Function, except Phase Spectrum where only the first segment of
data is used.

Return Values
Reserved.

2.2.4 SPA_SpectrumAnalysisDualChannel

The SPA_SpectrumAnalysisDualChannel function performs dual-channel analysis for
amplitude spectrum, phase spectrum, auto correlation, cross correlation, coherence function,
transfer function, impulse response, depending on the analysis mode selected.

SPA SpectrumAnalysisDualChannel (
double* xrl,
double * xil,
double* xr2,

double * xiZ2,
double * xpl,
double * xp2,
double * DatalInEU1,

double * DatalInEUZ,

long FFTSize,

DWORD DataCount,

double Meanl,

double Mean?,

int WindowType,

double WindowOverlapPercent,
int AnalysisMode

)

Parameters
xrl

Pointer to the real part of FFT/iFFT intermediate / final result for Channel 1.

(output)

x11
Pointer to the imaginary part of FFT/iFFT intermediate / final result for Channel 1.
(output)

Xr2
Pointer to the real part of FFT/IFFT intermediate / final result for Channel 2.
(output)

XiZ

Pointer to the imaginary part of FFT/iFFT intermediate / final result for Channel 2.
(output)

www.virtins.com 9 Copyright © 2014-2021 Virtins Technology

Signal Processing and Analysis APIs 1.3 @ Virtins TeChnOIOQy

xpl
Pointer to the spectrum analysis result for Channel 1. (output)
Xp2
Pointer to the spectrum analysis result for Channel 2. (output)
DatalInEUI
Pointer to the data of Channel 1 to be analyzed. (input)
DataInEU2
Pointer to the data of Channel 2 to be analyzed. (input)
FFTSize
Number of FFT points. It must be a power of 2. (input)
DataCount
Number of data per channel to be analyzed (input)
Meanl
Mean value of Channel 1 data to be analyzed. It can be obtained through
SPA_MaxMinMeanRMS(). (input)
It is used to remove the mean in the data in time domain before spectral analysis.
MeanZ2
Mean value of Channel 2 data to be analyzed. It can be obtained through
SPA_MaxMinMeanRMS(). (input)
It is used to remove the mean in the data in time domain before spectral analysis.
WindowType

Specifies the window function type. (refer to the same parameter in
SPA_Windowing()). (input)

WindowOverlapPercent
Specifies the window overlap percentage. Its value should be equal to or greater
than 0 but less than 1. (input)

AnalysisMode
Analysis mode. (input)

0: Amplitude Spectrum
xrl: real part of FFT intermediate / final result for Channel 1 (FFTSize points)
xil: imaginary part of FFT intermediate / final result for Channel 1 (FFTSize
points)
xr2: real part of FFT intermediate / final result for Channel 2 (FFTSize points)
xi2: imaginary part of FFT intermediate / final result for Channel 2 (FFTSize
points)

xpl: RMS amplitude spectrum result for Channel 1 (FFTSize / 2 + 1 points)
xp2: RMS amplitude spectrum result for Channel 2 (FFTSize / 2 + 1 points)

1: Phase Spectrum

www.virtins.com 10 Copyright © 2014-2021 Virtins Technology

Signal Processing and Analysis APIs 1.3 @ Virtins TeChnOIOQy

xrl: real part of FFT intermediate / final result for Channel 1 (FFTSize points)

xil: imaginary part of FFT intermediate / final result for Channel 1 (FFTSize
points)

xr2: real part of FFT intermediate / final result for Channel 2 (FFTSize points)

xi2: imaginary part of FFT intermediate / final result for Channel 2 (FFTSize
points)

Xpl: phase spectrum result in degree for Channel 1 (FFTSize / 2 + 1 points)
Xp2: phase spectrum result in degree for Channel 2 (FFTSize / 2 + 1 points)

2: Auto Correlation
xpl: auto correlation result for Channel 1 (FFTSize - 1 points)
Xp2: auto correlation result for Channel 2 (FFTSize - 1 points)

3: Cross Correlation
xpl: cross correlation result for Channel 1 (FFTSize - 1 points)
Xp2: cross correlation result for Channel 2 (FFTSize - 1 points)

4: Coherence Function
xpl: coherence function result (FFTSize / 2 + 1 points)

5: Transfer Function
xpl: Gain result (FFTSize / 2 + 1 points)
xp2: Phase result (FFTSize / 2 + 1 points)

6: Impulse Response
xpl: impulse response result (FFTSize points)

If FFTSize is greater than DataCount, then zeros will be padded at the end of
DataInEUduring FFT computation.

If FFTSize is less than DataCount, then DataInEU will be split into different segments
with the size of each segment equal to FFTSize. The last segment of data will be dropped if
its size is not equal to FFTSize. The final result will be obtained by averaging the FFT
results from all segments. It should be noted that this approach is used for Amplitude
Spectrum, Auto Correlation Function, Cross Correlation Function, Coherence Function,
Transfer function, and Impulse Response, except Phase Spectrum where only the first
segment of data is used.

The following table listed the averaging method used for each analysis mode:

Amplitude Phase Auto Cross Coherence | Transfer Impulse

Spectrum Spectrum Correlation Correlation | Function Function Response

Power Average No Power Power Power Power Power
Average Average Average Average Average

Power Average: The averaging is performed in power spectrum, such as auto power spectrum or cross
power spectrum, during the computing process. For amplitude spectrum, it is often called “RMS average”.

Normal Average: arithmetic average.

www.virtins.com 11 Copyright © 2014-2021 Virtins Technology

Signal Processing and Analysis APIs 1.3 @ Virtins TeChnOIOQy

Return Values
Reserved.

2.2.5 SPA_PeakFrequencyDetection

The SPA_PeakFrequencyDetection function detects the peak frequency as well as its RMS
amplitude and phase from the RMS amplitude spectrum result.

SPA_PeakFrequencyDetection(
double * xr,

double * xi,

double * xp,

long FFTSize,

double SamplingFrequency,
double * PeakFrequency,
double *PeakFrequencyRMS,
double * PeakFrequencyPhase

);
Parameters
Xr
Pointer to the real part of FFT/iFFT intermediate / final result. (input)
x1
Pointer to the imaginary part of FFT/iFFT intermediate / final result. (input)
Xp
Pointer to the RMS amplitude spectrum result. (input)
FFTSize
Number of FFT points. It must be a power of 2. (input)
SamplingFrequency
Sampling frequency of the data to be analyzed (input)
PeakFrequency
Pointer to the calculated peak frequency. (output)
PeakFrequencyRMS
Pointer to the calculated RMS value of the peak frequency. (output)
PeakFrequencyPhase
Pointer to the calculated phase value (in degree) of the peak frequency. (output)

Return Values
Reserved.

2.2.6 SPA_MFCC

www.virtins.com 12 Copyright © 2014-2021 Virtins Technology

Signal Processing and Analysis APIs 1.3 @ Virtins TeChnOIOQy

The SPA_MFCC function calculates the Mel-Frequency Cepstrum Coefficients from RMS
amplitude spectrum data.

SPA_MFCC(

double *xp,

long FFTSize,

double SamplingFrequency,
double FrequencyLowerLimit,
double FrequencyUpperLimit,
long MelBandCount,

double * MelCenterF,

double * MelBand,

double * MFCC,

int FilterMode,

double RelativeTroughLevellndB

)
Parameters
xp

Pointer to the RMS amplitude spectrum result. (input)
FFTSize

Number of FFT points. It must be a power of 2. (input)
SamplingFrequency

Sampling frequency of the RMS amplitude spectrum data to be analyzed (input)
FrequencyLowerLimit

Frequency lower limit of the Mel frequency bands (input)
FrequencyUpperLimit

Frequency upper limit of the Mel frequency bands (input)
MelBandCount

Number of Mel frequency bands in the specified frequency range (input)
MelCenterF

Pointer to an array of center frequencies of Mel frequency bands (output)

Note that: [number of center frequencies] = MelBandCount + 2;
MelBand

Pointer to an array of energy contained in each Mel band. (output)
Note that: [number of Mel Bands] = MelBandCount;

MFCC

Pointer to an array of MFCC. (output)

Note that: [number of MFCCs] = MelBandCount;
FilterMode

Mel-scale filter bank mode (input)
0 - filter on power spectrum 1 — filter on amplitude spectrum

www.virtins.com 13 Copyright © 2014-2021 Virtins Technology

Signal Processing and Analysis APIs 1.3 @ Virtins TeChnOIOQy

RelativeTroughLevel IndB
Forced minimum trough level in dB relative the peak level in Mel frequency bands.

Return Values
Reserved.

2.2.7 SPA_DTW

The SPA_DTW function computes the distance between two 2-D arrays using Dynamic
Time Warping. For example, it can be used to compute the similarity between two 2-D arrays
of MFCCs.

double SPA_DTW(
double **x,

double **y,

long XCount,

long YCount,

long MFCCCountChosen

)

Parameters
* *X

Pointer to the first 2-D array. (input)

* *y

Pointer to the second 2-D array. (input)
Xcount

Number of points in the first array
Ycount

Number of points in the second array
MFCCCountChosen

Number of MFCC used for distance calculation.
[MFCCCountChosen] <= [MFCC Band Count]

Return Values
Distance between the two arrays.

2.2.8 SPA_THD

The SPA_THD function calculates THD, THD+N, SINAD, SNR from the RMS amplitude
spectrum result.

SPA_THD(

double * xr,

double * xi,

double * xp,

long FFTSize,

double SamplingFrequency,

www.virtins.com 14 Copyright © 2014-2021 Virtins Technology

Signal Processing and Analysis APIs 1.3 @ Virtins TeChnOIOQy

double THDFregLowerLimit,
double THDFreqUpperLimit,
double * PeakFrequency,
double * THD,

double * THDN,

double * SINAD,

double * SNR

);

Parameters
X

Pointer to the real part of FFT/iIFFT intermediate / final result. (input)

X1

Pointer to the imaginary part of FFT/iFFT intermediate / final result. (input)
xp

Pointer to the RMS amplitude spectrum result. (input)
FFTSize

Number of FFT points. It must be a power of 2. (input)
SamplingFrequency

Sampling frequency of the data to be analyzed (input)
THDFreqgLowerLimit

THD, THD+N, SINAD, SNR calculation frequency band lower limit (input)
THDFreqUpperLimit

THD, THD+N, SINAD, SNR calculation frequency band upper limit (input)
PeakFrequency

Pointer to the calculated peak frequency (fundamental frequency). (output)
THD

Pointer to the calculated THD in percentage (e.g. 0.01 means 1%). (output)
THD+N

Pointer to the calculated THD+N in percentage (e.g. 0.01 means 1%). (output)
SINAD

Pointer to the calculated SINAD in dB. (output)
SNR

Pointer to the calculated SNR in dB. (output)

Return Values
0: Normal
Others: Error

Note: For THD, THD+N, SINAD, SNR measurement, Record Length, FFT size, Window
function, etc. need to be set properly in order to get meaningful results. Please refer to Multi-
Instrument software manual for details.

www.virtins.com 15 Copyright © 2014-2021 Virtins Technology

Signal Processing and Analysis APIs 1.3 @ Virtins TeChnOIOQy

2.3 General APIs
2.3.1 SPA_Unlock

The SPA_Unlock function unlocks the vtSPA DLL so that its functions can be used by the
calling program. This function must be called before any other API functions can be used.

void Unlock (

long nSerialNumberPartl, //serial number part
long nSerialNumberPart2, //serial number part
long nSerialNumberPart3, //serial number part
long nSerialNumberPart4 //serial number part

)

Dw N

Parameters
nSerialNumberPartl
Part 1 of the serial number of the vtiSPA DLL.

nSerialNumberPart2
Part 2 of the serial number of the vtSPA DLL.

nSerialNumberPart3
Part 3 of the serial number of the viSPA DLL.

nSerialNumberPart4
Part 4 of the serial number of the viSPA DLL.

Note that:

1. The serial number has a format of partl-part2-part3-part4, where each part contains four
characters in hex format.

2. For copy-protected VtSPA DLLs, such as the trial version, the softkey activated version,
the USB hardkey activated version and the DSO hardware activated version, a generic
serial number 0000-0000-0000-0000 should be used. Note that for the trial version and
the softkey activated version, a warning message will pop up showing that the DLL is a
trial version. The message will not show up if a USB hardkey or any VT DSO hardware
is connected to your computer. To speed up the search for them,
nSerialNumberPart4 can be set to a value corresponding to the particular
hardware connected. For example, if the connected hardware device is VT IEPE-2G05,
then Unlock(0,0,0,8) can be used, which will be faster than Unlock(0,0,0,0) as the latter
will spend extra time on searching for other hardware.

0- All possible hardware
1- USB Hardkey

2- VT DSO H1

3- VT DSO F1

4- VT DSO H2

www.virtins.com 16 Copyright © 2014-2021 Virtins Technology

Signal Processing and Analysis APIs 1.3 @ Virtins TeChnOIOQy

5- VT DSO H3

6- VT DAQ1

7- Digiducer 333D01

8- VT IEPE-2G05 / CAMP-2G05 / RTA-1G05

3. For not-copy-protected VtSPA DLLs, which is usually the case for OEM, a customer
specific serial number will be given when the DLL is purchased from Virtins
Technology.

www.virtins.com 17 Copyright © 2014-2021 Virtins Technology

Signal Processing and Analysis APIs 1.3 @ Virtins TeChnOIOQy

3. VtSPA Development Guide

3.1 Flowcharts

SPA_Unlock()
Call other APIs as needed. Pay attention
to the sequence of the data flow

3.2 Basic Files

1. Header file to be included: vtSPA.h
2. ViSPA.dII
3. ViSPA.lib

www.virtins.com 18 Copyright © 2014-2021 Virtins Technology

Signal Processing and Analysis APIs 1.3 @ Virtins TeChnOIOQy

4. Sample Programs

4.1 TestDAQ written in Visual C++ 6.0

#» ADC1 - TestDAQ

~-||a2B ~|
Max1= 0.9360657, Min1=-0.9422607, Mean1=-0.0032324, RMG51= 0.6640764
FrequencyCountl= 999.7Hz, TotalCountl= 10.0, RPM1= 59984.9, DutyCyclel=51.6%, CycleRMS=0.6639941, CycleMean=-0.0032426
PeakFrequency= 1000.0Hz, PeakFrequencyRMS= 0.6640566, PeakFrequencyPhase=-119.6degree

Ready

TestDAQ is a sample DAQ back-end program. It demonstrates how to use the vtiDAQ
interfaces to perform data acquisition. As shown in the above screenshot, there are one
Start/Stop button for starting/stopping DAQ, one combo box for selecting viDAQ interface
DLLs, and one combo box for selecting the number of sampling channels. Selection of
sampling channels is used to demonstrate how to change a sampling parameter on-the-fly
without manually stopping the DAQ first. All other DAQ parameters are set inside the
software codes for simplicity purpose. The program also demonstrates how easily a back-end
program can interface to a variety of viDAQ compatible devices, currently including:

Sound Cards (MME)
Sound Cards (ASIO)
NI DAQmx Cards
VT DSO H1

VT DSO H2

VT DSO H3

VT DSO F1

VT DAQ 1

My DAQ Device

To facilitate data processing and analysis after data acquisition, Virtins Technology has also
developed and exposed a suite of Signal Processing and Analysis APIs (VtSPA). These APIs
are also linked inside the TestDAQ program. To demostrate some of the VtSPA features,
TestDAQ calculates the Max, Min, Mean, RMS, frequency count, total count, RPM, duty

www.virtins.com 19 Copyright © 2014-2021 Virtins Technology

Signal Processing and Analysis APIs 1.3 @ Virtins TeChnOIOQy

cycle, cycle RMS, cycle mean, peak frequency, RMS of peak frequency, and phase of peak
frequency. These values are displayed in the upper par of the oscilloscope graph.

(please refer to: http://www.virtins.com/vtDAQ-and-vtiDAO-Interfaces.pdf for detailed
description of vtDAQ and vt DAO interfaces.)

4.2 TestDAQ written in Visual C# 2012

TestDAQ_CSharp is a sample DAQ back-end program written in Visual C#, with functions
similar to its Visual C++ counterpart introduced previously. Instead of calling vtDAQ
interface dll directly, it interfaces to viDAQLV.dIl which in turn calls the respective viDAQ
interface dll, thus avoiding using complex data structures in the original viDAQ APIs. This
program also demonstrates how to interface to vtSPA.dII using C#.

www.virtins.com 20 Copyright © 2014-2021 Virtins Technology

http://www.virtins.com/vtDAQ-and-vtDAO-Interfaces.pdf

